Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

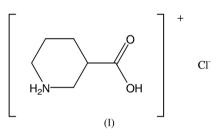
Rajenahally S. Narasegowda,^a Hemmige S. Yathirajan^a and Michael Bolte^b*

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.002 Å R factor = 0.022 wR factor = 0.057 Data-to-parameter ratio = 14.2


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Nipecotic acid hydrochloride

The title compound (3-carboxypiperidinium chloride), $C_6H_{12}NO_2^+ \cdot Cl^-$, is the hydrochloride of nipecotic acid and is used as a drug intermediate and in the synthesis of γ -aminobutyric acid (GABA) uptake inhibitors. The geometric parameters are in the normal ranges. The crystal packing is stabilized by $O-H \cdots Cl$ and $N-H \cdots Cl$ hydrogen bonds.

Comment

Nipecotic acid or 3-piperidinecarboxylic acid is used as a drug intermediate and also in the synthesis of γ -aminobutyric acid (GABA) uptake inhibitors (Muralidhar *et al.*, 1994). A review on the neurochemical and behavioural profile of a derivative of nipecotic acid hydrochloride has been reported by Suzdak & Jansen (1995). In view of the importance of nipecotic acid, the present paper reports the crystal structure of nipecotic acid hydrochloride, (I).

A perspective view of the title compound is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 1.7; Mogul Version 1.0.1; Allen, 2002). The heterocycle adopts a chair conformation. The crystal packing is stabilized by $O-H\cdots$ Cl and $N-H\cdots$ Cl hydrogen bonds.

Experimental

Nipecotic acid was purchased from the Aldrich Chemical Company and was converted to its hydrochloride by adding a mixture of isopropyl alcohol and hydrochloric acid (80/20). The compound was recrystallized from ethanol.

Crystal data	
$C_6H_{12}NO_2^+ \cdot Cl^-$	$D_x = 1.364 \text{ Mg m}^{-3}$
$M_r = 165.62$	Mo $K\alpha$ radiation
Monoclinic, P2 ₁	Cell parameters from 8363
a = 7.2545 (10)Å	reflections
b = 7.2018 (9) Å	$\theta = 3.8-25.7^{\circ}$
c = 7.7886 (13) Å	$\mu = 0.42 \text{ mm}^{-1}$
$\beta = 97.819 \ (12)^{\circ}$	T = 173 (2) K
$V = 403.14 (10) \text{ Å}^3$	Block, colourless
Z = 2	$0.37 \times 0.23 \times 0.19 \text{ mm}$

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 10 February 2005 Accepted 17 February 2005 Online 26 February 2005

organic papers

Data collection

Stoe IPDS-II two-circle diffractometer w scans Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995) $T_{\min} = 0.861, T_{\max} = 0.925$ 3354 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.022$ wR(F²) = 0.057 S = 1.101477 reflections 104 parameters H atoms treated by a mixture of independent and constrained refinement

1477 independent reflections 1460 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.020$ $\theta_{\rm max} = 25.5^{\circ}$ $h = -8 \rightarrow 8$ $k = -8 \rightarrow 8$ $l = -9 \rightarrow 9$

 $w = 1/[\sigma^2(F_o^2) + (0.0315P)^2]$ + 0.0946P] where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\text{max}} = 0.20 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.17 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.075 (10) Absolute structure: Flack (1983), 671 Friedel pairs Flack parameter: 0.10 (6)

Table 1

Selected geometric parameters (Å, °).

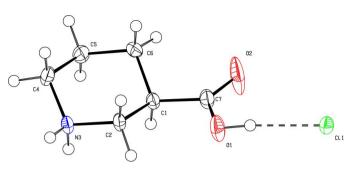

C2-N3	1.4972 (18)	C7-O2	1.187 (2)
N3-C4	1.502 (2)	C7-O1	1.323 (2)
C2-N3-C4	113.78 (12)	O2-C7-C1	123.39 (16)
O2-C7-O1	122.79 (15)	O1-C7-C1	113.68 (14)

Table 2	
Hydrogen-bond geometry (Å, $^{\circ}$).	

$D - \mathbf{H} \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O1 - H1O \cdots Cl1\\ N3 - H3A \cdots Cl1^{i}\\ N3 - H3B \cdots Cl1^{ii}\\ N3 - H3B \cdots O2^{ii} \end{array}$	0.89 (3) 0.96 (2) 0.90 (2) 0.90 (2)	2.11 (3) 2.20 (2) 2.47 (2) 2.42 (2)	2.9985 (13) 3.1428 (15) 3.2525 (15) 2.9590 (19)	173 (2) 166 (2) 147 (2) 119 (2)

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + 1$; (ii) x, y, z - 1.

All H atoms were located in a difference map. Those bonded to C atoms were positioned geometrically and refined with fixed individual displacement parameters (set to 1.2 times U_{eq} of the parent C atom)

Perspective view of the title compound, showing the atom numbering and displacement ellipsoids drawn at the 50% probability level. The dashed line indicates a hydrogen bond.

using a riding model, with C-H = 0.99 and 1.0 Å for secondary and tertiary H atoms. The H atoms bonded to N and O atoms were refined freely. The ADDSYM routine in PLATON (Spek, 2003) detects a pseudo-centre of symmetry in the structure, which is fulfilled by approximately 80% of the structure. This would mean changing the space group from $P2_1$ to $P2_1/m$. In this case, the molecule must lie on a mirror plane. However, the molecule does not have any symmetry at all. Therefore, $P2_1$ is the correct space group and it is just a pseudocentre of symmetry that PLATON detects.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Muralidhar, T. G., Borden, L. A., Tyagarajan, S., Smith, K. E., Branchek, T. A., Weinshank, R. L. & Gluchowski, C. (1994). J. Med. Chem. 37, 2334-2342.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany. Suzdak, P. D. & Jansen, J. A. (1995). Epilepsia, 36, 612-626.